Geometry » Solids

Cube

cube

Area = 6 × s2 (s is the length of the side/edge)
Volume = s3

Cuboid

cuboids

Area = 2 × (l × w + l × h + w × h)
Volume = l × w × h

Sphere

sphere

Area = 4 × π × r2
Volume = 43 × π × r3

Cone

cone
Area cone area base + area slanted face
π × r2 + π × r × square root(r^2 + h^2)
Volume = 13 × area base × height
 = 13 × π × r2 × h

Prism

prisms

A prism consists of a polygon as a base and top. All cross-section, parallel to the base, must be identical.
Area = calculate faces separately and add them together
Volume = area base × height

Pyramid

pyramids

A pyramid consists of a polygon as a base and triangular slanted sides from every side of the polygon towards a common point/top.
Area = area slanted faces + area base
Volume = 13  × area base × height

Cylinder

cylinder

A cylinder consists of a circle or an ellipse as a base and top. All cross-sections, parallel to the base, must be identical.

Formulas for circular base

Area = area top and base + area side
 2 × area base + circumference base × height
 2 × π × r 2 + 2 × r × π × h
Volume = area base × height
 π × r 2 × h

Formulas for ellipsoidal base

Area = area top and base + area side
 2 × area base + circumference base* × height
 2 × π × r 2 + πsquare root(2(a^2 + b^2)) × h
Volume = area base × height
 π × a × b × h

with a half the size of the longest axis and b half the size of the shortest axis


* The circumference formula of the ellips (circumference = πsquare root(2(a^2 + b^2))) is not precise.
A slightly more precise approximation is circumference = π(3(a + b) – square root((a + 3b)(3a + b)))
Only with a very difficult calculation (ellipsoidal integral) can the circumference of a ellips be calculated precisely.