Equations » Trigonometric equations
The equations sin
(A) = C and cos
(A) = C with C = –1,0,1 you solve using the unit circle.
sin
(A) = 0 gives A = k · π
sin
(A) = 1 gives A = 12π + k · 2π
sin
(A) = –1 gives A = – 12π + k · 2π
cos
(A) = 0 gives A = 12π + k · π
cos
(A) = 1 gives A = k · 2π
cos
(A) = –1 gives A = π + k · 2π
The equations sin
(A) = C and cos
(A) = C with C = –12, – 12, – 12, 12, 12, 12 you solve by reading of one solution B from the 'exact-values-circle'.
Then you use:
sin
(A) = C gives A = B + k · 2π or A = π – B + k · 2π
cos
(A) = C gives A = B + k · 2π or A = –B + k · 2π
Example 1
sin
(2x – 13π) = 1
2x – 13π = 12π + k · 2π
2x = 56π + k · 2π
x = 512π + kπ
Example 2
cos
2(x) – cos
(x) = 0
cos
(x) · (cos
(x) – 1) = 0
cos
(x) = 0 or cos
(x) = 1
x = 12π + kπ or x = k · 2π
Example 3
2sin
(3x) =
sin
(3x) = 12
sin
(3x) = sin
(13π)
3x = 13π + k · 2π or 3x = π – 13π + k · 2π
x = 19π + k · 23π or x = 29π + k · 23π
2cos
(2x – 13π) = –
cos
(2x –13π) = –12
cos
(2x –13π) = cos
(34π)
2x – 13π = 34π + k · 2π or 2x – 13π = –34π + k · 2π
2x = 1312π + k · 2π or 2x = –512π + k · 2π
x = 1324π + kx or x = –524π + kπ