Differentiation and integration » Rules for differentiation
Contents
1. Table with the rules2. Chain rule
3. Product rule
4. Quotient rule
1. Table with the rules
Examples | |||
Function | Derivative | f (x) | f '(x) |
a | 0 | 6 | 0 |
ax | a | 7x | 7 |
axb | abxb – 1 | 8x3 2x = 2x1.5 4x5 = 4x–5 |
24x2 3x0.5 = 3 –20x–6 = – 20x6 |
c · f (x) | c · f '(x) | 2x13 | 2 · 13x12 = 26x12 |
f (x) + g(x) | f '(x) + g'(x) | x4 + 4x | 4x3 + 4 |
f (x) · g(x) See product rule |
f '(x) · g(x) + f (x) · g'(x) | (x2 – 4) · (x3 + 2x + 3) | [x2 – 4]' · (x3 + 2x + 3) + (x2 – 4) · [x3 + 2x + 3]' = 2x(x3 + 2x + 3) + (x2 – 4)(3x2 + 2) = 5x4 – 6x2 + 6x – 8 |
f (x)g(x) See quotient rule |
g(x) · f '(x) – f (x) · g'(x)(g(x))2 | 4x + 1x2 + 1 | (x2 + 1) · 4 – (4x + 1) · 2x(x2 +1)2 = 4x2 + 4 – 8x2 – 2x(x2 + 1)2 = –4x2 – 2x + 4(x2 + 1)2 |
aebx | abebx | 12 · π · e2x | π · e2x |
e f (x) | f '(x) · e f (x) | e2x2 – x | (4x – 1) · e2x2 – x |
a f (x) | ln (a) · f '(x) · a f (x) |
54x – 1 | ln (5) · 4 · 54x – 1 |
ln (ax) = ln (a) + ln (x) |
1x | ln (4x) = ln (4) + ln (x) |
1x |
ln (axb) = ln (a) + b · ln (x) |
bx | ln (3x) = ln (3) + 1.5 · ln (x) |
1.5x |
alog (f (x)) = ln (f (x))ln (a) |
1ln (a) · 1f (x) · f '(x) |
3log (3x – 3) = ln (3x – 3)ln (3) |
1ln (3) · 13x – 3 · 3 |
sin (ax + b) |
a · cos (ax + b) |
sin (12 π · (x – 1)) |
12π · cos (12π · (x – 1)) |
c · cos (ax + b) |
–a · c · sin (ax + b) |
cos (2x – 1) |
– · sin (2x – 1) |
tan (x) |
1cos 2(x) = 1 + tan 2(x) |
2. Chain rule
f (g(x)) has derivative f '(g(x)) · g'(x)
Two examples of the chain rule:
f (x) = (x2 + 1)5 |
f (x) = (x2 + 1)5 g(x) = x2 + 1 g'(x) = 2x
f '(x) = 5u4 · 2x f '(x) = 5(x2 + 1)4 · 2x f '(x) = 10x(x2 + 1)4 |
|||||
f (x) = |
f (x) = h(x) = sin (x)h'(x) = cos (x)
f '(x) = cos (x) · 2u · f '(x) = cos (x) · 2 sin (x) · f '(x) = |
3. Product rule
p(x) = f (x) · g(x) has derivative p'(x) = f '(x) · g(x) + f (x) · g'(x)
An example of the product rule and the chain rule:
h(x) = x · |
h'(x) = [x]' · + x · []' h'(x) = 1 · + x · 2x + 12 h'(x) = + 2x2 + x2 h'(x) = 2(x2 + x) + 2x2 + x2 = 4x2 + 3x2 |
|||
Chain rule part for |
f (x) = g(x) = x2 + x g'(x) = 2x + 1
f '(x) = 12 · (2x + 1) f '(x) = 2x + 12 |
4. Quotient rule
f (x) = g(x)h(x) has derivative f '(x) = g'(x) · h(x) – g(x) · h '(x)(h(x))2
An example of the quotient rule:
k(x) = 5x2 + 3x – 2x2 + 1 |
k'(x) = [5x2 + 3x – 2]' · (x2 + 1) – (5x2 + 3x – 2) · [x2 + 1]'(x2 + 1)2 k'(x) = (10x + 3) · (x2 + 1) – (5x2 + 3x – 2) · 2x(x2 + 1)(x2 + 1) k'(x) = (10x3 + 10x + 3x2 + 3) – (10x3 + 6x2 – 4x)x4 + 2x2 + 1 k'(x) = 10x3 + 10x + 3x2 + 3 – 10x3 – 6x2 + 4xx4 + 2x2 + 1 k'(x) = –3x2 + 14x + 3x4 + 2x2 + 1 |